An ART-type network approach for video object detection
نویسندگان
چکیده
This paper presents an ART-type network (adaptive resonant theory) to detect objects in a video sequence classifying the pixels as foreground or background. The proposed ART network (ART+) not only possesses the structure and learning ability of an ART-based network, but also uses a neural merging process to adapt the variability of the input data (pixels) in the scene along the time. Experimental results demonstrate the effectiveness and feasibility of the proposed ART+ approach for object detection. Standard datasets are used to compare the efficiency of the proposed approach against other traditional methods based on gaussian models.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملAn Improved Motion Vector Estimation Approach for Video Error Concealment Based on the Video Scene Analysis
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of...
متن کاملروشی جدید برای اختفای خطا در فریمهای ویدئو با استفاده از شبکه عصبی RBF
Transmission of compressed video over error prone channels may result in packet losses, which can degrade the image quality. Error concealment (EC) is an effective approach to reduce the degradation caused by the missed information. The conventional temporal EC techniques are always inefficient when the motions of the video object are irregular. In this paper, in order to overcome this problem,...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملFast YOLO: A Fast You Only Look Once System for Real-time Embedded Object Detection in Video
Object detection is considered one of the most challenging problems in this field of computer vision, as it involves the combination of object classification and object localization within a scene. Recently, deep neural networks (DNNs) have been demonstrated to achieve superior object detection performance compared to other approaches, with YOLOv2 (an improved You Only Look Oncemodel) being one...
متن کامل